

Architecture for Predictable Systems

Mark Gerhardt
Doug Locke

TimeSys Corporation
Pittsburgh, PA

www.timesys.com

Abstract
Predictable systems are systems in which correctness
arguments consider both the appropriateness and the
timeliness of delivered results. Such systems exhibit both
statistical timing as well as bounded duration timing ex-
pectations. Such systems require suitable architectural
techniques that do not preclude meeting the timing ex-
pectations. This paper provides a summary of some of
these issues and the architectural concerns that surface
when addressing timing constraints in performance
critical systems. The currently well-known design meth-
ods are examined for their suitability to describe and re-
cord architectures with predictable performance. Rele-
vant changes resulting in a suitable method for real -time
object-oriented analysis to are suggested.

Introduction
A real-time system is one in which correctness depends
on meeting time constraints. Correctness arguments,
therefore, must reason about response time requirements
as well as functional requirements. The timing require-
ments may be “Hard” duration limits between events or
“Soft” statistical expectations. A real-time architecture
must not preclude meeting response time constraints.

Object choices made while architecting a system always
involve resource sharing and schedule contention that
can ultimately result in timing failure. Many popular ar-
chitectures and methodologies ignore response time
concerns until it is too late to correct them economically.

Levels of Timing Expectations

There are five categories of timing expectations. Each
category provides a different degree of rigor regarding
expected performance. More importantly, each category
utilizes different infrastructure and communication tech-
niques. The architectural structures and techniques ap-
propriate for use in one of these categories are usually
inappropriate for the others. The categories are pre-
sented in order of increasing knowledge about the inter-
nal mechanics of implementation. Note that both of the
last two categories can guarantee bounded response
time, but they have very different costs and fault charac-
teristics.
• Measured after the fact – (quantitative indications)

Quantitative measurements may or may not be re-
peatable. Ad hoc quantification and measurement
is extremely misleading. For example, measuring
the temperature for 3 days does not adequately
prepare for prediction of tomorrow’s temperature.

• Repeatable Measured
Knowledge about the context in which measure-
ments are taken adds to the confidence by which
extrapolation and prediction can be done. Know-
ing the latitude, time of day, and date of the tem-
perature measurement give increasing confidence
to extrapolation of the three temperature measur e-
ments for the fourth day. In the case of a meas-
urement capturing the execution time of the soft-
ware application, one must consider the application
in a context of background processes including
spoolers, message handlers, and garbage collectors
for meaningful extrapolation.

• Statistically Predictable Architecture
Statistical characterizations indicate average re-
sponse time and related standard deviation. Archi-
tectural techniques employed in building statisti-
cally predictable systems include queuing (usually
first-in-first-out), asynchronous messaging, and re-
active event handlers. Analysis techniques that are
applicable include discrete event simulation via use
cases and the application of queuing theory.

• Analytically Guaranteed Bounded Latency
Latency is the duration between the occurrence of
an event and the completion of the associated sys-
tem response to that event. Architectural tech-
niques resulting in systems that exhibit guaranteed
bounded latency include Shared Resources .
Shared resources are entities that are "locked" by
clients. As such, they exhibit protected regions of
use. In conjunction with Fixed Priority Schedul-
ing, “real-time” O/S Kernels permit the use of an a-
lytical techniques such as rate monotonic analysis
and resource arbitration policies such as priority
inheritance. Such systems may be analyzed and
may therefore be guaranteed to possess upper
bounded latency response times to specified stim-
uli.

• Deterministic
A deterministic architecture provides a prior i
knowledge about every state that a system will pass
through over time in response to a specific stimu-
lus. Techniques used to build deterministic archi-
tectures include centralized frame based schedulers
(cyclic executives) and statically limited language
subsets (eliminating constructs and concepts such
as exceptions and their propagation, allocation, dy-
namic polymorphism resolution, and dynamic
thread creation). The SPARK approach is an ex-

ample of such an approach from Praxis in the
United Kingdom.

Real-Time Properties

There is a difference in how we discuss real-time sys-
tems from how we discuss more conventional time-
sharing systems. Time sharing systems have implicit
expectations about fairness and concepts such as "round
robin" scheduling disciplines. Common concepts such
as throughput are often confused with real-time concepts
such as deadlines. Consider the terminology shown in
Table 1:

 Time Sharing
Systems

Real-time
Systems

Capacity High Through-
put

Schedulabil-
ity

Responsivness Fast Average
Response

Ensured
Worst-Case
Latency

Overload Fairness Stability

Table 1. Terminology about Timing Concepts

Schedulability is the ability of tasks to meet all hard
deadlines.
Latency is the worst -case system response time to
events.
Stability in over load means the system meets critical
deadlines even if all deadlines cannot be met.

Current Design Practices and Processes

Current practices, processes, and tools use object subsys-
tem abstractions that do functional encapsulation; i.e.,
the abstractions characterize services and interface-
centric concerns. In order to successfully analyze a sys-
tem’s guaranteed performance and latency, the semantics
of resource contention and usage not only must be cate-
gorized explicitly and made visible to potential clients,
but this must be done surprisingly early in the develop-
ment process.

Most popular object -oriented decomposition techniques
and their accompanying graphical representations do not
sufficiently address expression of concurrency, active
objects, shared resources, and synchronization and con-
tention semantics with sufficient precision to allow all
architectural analysis. A simple example illustrates this
point.

Family Obligations – An Example

The idea of shared resources is familiar to most people.
Consider the family car. When parents run errands, the
errands must be sequenced because each errand requires
the car. The inability to do an errand that a family mem-
ber is ready to do, but cannot do because the car is un-
available, is regarded as blocking. Most real-time sys-

tems fail to meet their performance deadlines because of
excessive blocking rather than because of excessive CPU
utilization. This has been well proven with numerous
case histories.

Performance limitations from sharing a car are so well
known that families purchase additional cars to improve
performance. Consider therefore, a family with two
cars. This family has three things to do: 1) purchase
groceries, 2) take the kids to soccer, and 3) purchase
hardware and fix the leaky toilet.

There are, therefore, three independent functional ac-
tions to perform, corresponding to numbers one through
three above. The family has two cars and only two
adults to drive the two cars. The family is also "socially
correct" according to American suburban conventions.
This means that the mother will take the kids to soccer
(it seems few have heard of “Soccer Dads,” but everyone
has heard of “Soccer Moms”) and will also purchase the
groceries (supermarkets in the USA sell Cosmopolitan
magazine rather than Esquire.) This means that the father
(using the other car) will go to the hardware store, pur-
chase the parts, and fix the toilet (Oh joy!)

The interesting implementation details relevant here are
that the soccer field is on the other side of town and
takes approximately 45 minutes driving each way. In
addition, the supermarket is next door to the hardware
store in a strip mall five minutes from home.

If there are performance constraints, for example, indi-
cating that in addition to the above tasks, Mom also
needs to spend five hours preparing dinner to entertain
Dad’s boss, this might limit the time allowable for soc-
cer and groceries support to under one-hour. This would
mandate a re-architecture of the system and its resources
so that Dad was assigned to soccer and grocery tasks
while Mom took care the toilet repair. (Consider this
performance directed social change!)

Current design methods and practices do not effectively
represent this type of performance information. Work is
currently underway within the Object Management
Group for an enhanced standard extending the Unified
Modeling Language (UML) and to effectively deal with
real-time architecture and design issues.

Sample Graphical Notation

The following figure provides a candidate graphical no-
tation to express the desired semantics at the higher level
of design regarding resources, and scheduling issues.

Fig 2. Early Graphical Design and Essential Timing Detail

At the highest level of architecture, there are essential
details that must be considered and essential allocations
of very high-level functionality to a set of predetermined
and constrained resources. Reducing the time that it

takes to purchase groceries (analogous to reducing com-
putation time by speeding things up) has a fairly minimal
effect in comparison to the amount of time Mom spends
in traffic (analogous to blocking time vs. computation
time issues).

This work is actually an extension of the work emanat-
ing from 1984 by R.J.A. Buhr about visual prototyping
from a work by the same name. These considerations
also represent the issues that are being currently dealt
with within the Object Management Group in its work
extending UML for real-time.

Rate Monotonic Analysis

Rate Monotonic Analysis (RMA) consists of a set of
techniques for analyzing and guaranteeing that the ex-
ecutable threads within a system – including periodic
and aperiodic activities – will be completed before their
required respective deadlines.

RMA is an analysis rather than a simulation or modeling
technique. For complex systems, obtaining the scenario
that embodies the worst-case performance stress upon a
system is extremely difficult. Simulated execution of
such a simulation case usually involves significant com-
puting resources.

Both the average and the worst case response times are
of interest for systems which manifest timing require-
ments. Average response time is usually obtained
through simulation modeling or extensive laboratory
measurements. Worst -case response time is obtained
through application of Rate Monotonic Analysis. Sy s-
tem design tradeoffs altering the worst case and average
case response times can be done by changing not only
execution times, but by altering the internal queuing,
synchronization, and concurrency partitioning of the ar-
chitecture as desired

Hard & Soft Real-Time

To a first order, time constraints can be characterized in
two categories. The first category consists of hard time
constraints, for which the system must be carefully de-
signed to never miss one. The implication of a hard-
real-time response requirement is that missing such a re-
quirement constitutes a failure to meet some part of the
overall system requirements, and is thus logged as a sys-
tem failure.

The second category consists of soft time constraints. A
soft time constraint is one that must be met just like a
hard time constraint, but missing one may not always be
considered a system failure. Soft time constraints are
usually characterized by constraints that can be missed
infrequently, or which can be missed by small amounts,
or both. There are also other definitions of soft time
constraints, such as periodic computations that might be
skipped occasionally.

Most real-time systems contain mixtures of hard and soft
time constraints. For example, a system might have a
requirement for controlling a radar transmitter, which is
usually characterized as a hard time constraint. The same
system might have response time constraints for operator
actions, which are generally soft constraints.

Timing Requirements

Int erestingly, the requirements for meeting time con-
straints in most application systems are not obvious from
the top-level description of the system. Instead, most
time constraints are derived from other system require-
ments, such as accuracy, fidelity, fault-tolerance, or user
interfaces.

For example, a robot might have an accuracy require-
ment for positioning an arm. This frequently results in a
derived requirement for periodicity in measuring posi-
tion; periodicity results in a time constraint for the result-
ing position computation. For another example, a re-
quirement for fault tolerance will generally imply that a
timeout or heartbeat mechanism must be used. The
presence of a heartbeat or timeout in a system results in a
hard-real-time timing requirement because a failure to
complete an operation within the response requirement
will result in an anomalous declaration of failure and re-
covery that is generally at least as dangerous as the
original failure for which automatic recovery was re-
quired.

RMA Fundamentals Overview

As previously mentioned, Rate Monotonic Analysis
(RMA) consists of a set of techniques for analyzing and
guaranteeing that the executable threads within a system
will be completed before their required respective dead-
lines. These techniques are based on work originally

Soccer Trip

Groceries Purchase

Period: 96 hours ;
Work: 120 min ;
Worst Case Execution: 120 min

Mom’s Car

Resource Start: 5 min;
Resource Stop: 80 min;

Period: 72 hours ;
Work: 65 ;
Worst Case Execution: 70 min

Resource Start: 3 min;
Resource Stop: 45 min

HW Resource

Execution Thread

performed by the Jet Propulsion Laboratory 1 that proved
that a set of periodic tasks would always complete before
the end of their periods as long as their total worst-case
utilization never exceeds a specified bound that depends
only upon the number of tasks, regardless of their phas-
ing. Based on this theoretical result, it was shown that
any set of periodic tasks whose total utilization is less
than 69% would always complete before the end of their
periods.

Subsequently, this basic result has been extended in
many directions to handle task synchronization (mutual
exclusion), deadlines that are not the same as task peri-
ods, arbitrary priority assignments, aperiodic tasks, and
many other real-time system situations. The theory re-
quires some basic system architecture information, in-
cluding task periods (for periodic tasks), task deadlines,
task priorities, execution time budgets, synchronization
time budgets, and arbitration policies. Given this infor-
mation, RMA analysis tools can determine whether all
time constraints can be met, and if not, which constraints
could be missed. The answer must then be interpreted to
decide whether the architecture will produce acceptable
timing results.

Rate Monotonic Analysis Example

The following discussion of the family car utilizes the
notation from "A Practitioner's Handbook to Rate Mono-
tonic Analysis, Klein et al.”, Kluwer 1993. The graphi-
cal rendering uses the TimeWiz tool provided by the
TimeSys Corporation.

Fig 3 - Resource Diagram

Fig 4 – The Software Behavior Diagram

1 Liu & Layland, Scheduling Algorithms for Multipr o-
gramming in a Hard Real Time Environment. JACM 20
(1):46, 1973.

Fig 3 shows the Resources specified by the architecture
design – the active or schedulable resource (Mom, the
driver), and Mom’s car (a resource that can be used by
only one driver at a time, or used in a locked and pro-
tected fashion.) These resources are utilized by the be-
havior of the system. This is depicted in the software
diagram.

Each collection of linked triangles and circles represents
a thread. Each element of the software diagram has
properties associated with it.

The Triangles are Triggers and indicate the invocation
of a thread. They are concerned with things relevant to
invocation of the thread. Circles represent Actions. Ac-
tions convey information about where they execute, how
much they execute, and what resources they need in or-
der to execute.

The following table summaries the relevant properties
needed to describe the problem and analyze its perform-
ance. Note that the timing diagram in Fig 4 is a more
precise definition of the problem than Fig 2. The need
for the car is more precisely defined to be needed only
by the four actions containing “drive” in their names.
Each represents driving to or from a respective location.
When Mom is watching the soccer game, she really does
not need the car and it could be used for other purposes
with no additional consequences to Mom’s deadlines as
long as it showed up at the soccer field by the end of the
game.

Symbol Property Meaning Value

Triangle Period Repetition in-
terval for exe-
cution

Grocer ies 72 Hrs
Soccer 96 Hrs

Triangle Deadline Needed com-
pletion Time

Groceries 72 Hrs
Soccer 96 Hrs

Circle CPU Used Which
Schedulable
Resource is
Used

All Actions are
done by Mom

Circle Execution
Time

How long the
work takes

Update Shop List
Drive To Store
Shop
Drive Home
Get Kids
Drive To Soccer
Watch
Drive Home
Feed Kids

Circle Priority What the
scheduling
importance is

All Actions in
Groceries Thread
get higher priority
than all actions in
Purchase Grocer-
ies (Rate Mono-
tonic Assignment)

Table 5 – Timing Properties and Meanings

Analysis can now be done to guarantee meeting all dead-
lines. The TimeWiz tool generated the following:

Fig 6 – Worst Case Analysis

Since all analyzed worst-case completion times are
smaller than required deadlines, the system is analyti-
cally proven to be Schedulable.

Enhancing the Development Process to Deal with
Timing Performance

The top -level concerns that take precedence when per-
formance constraints must be met invert the traditional
order and concerns within the design process. A non-
traditional view of systems architecture development is
needed. It is motivated by the requirement to produce an
architecture capable of predictably meeting its time
constraints in addition to all the traditional correctness,
quality, and maintainability concerns.

Object-Oriented systems development and Object-
Oriented programming both focus upon producing en-
capsulations and abstractions for system componentry.
The means of encapsulating these abstractions is based
upon an analysis of function and data interaction. The ef-
fects of the resulting architecture on the ability of a sys-
tem to meet its performance expectations requires sig-
nificant additional understanding well beyond the tradi-
tional understanding involving function sequences and
their combined computational timing requirements.

Starting with the goal of guaranteed timing performance
and the technique of Rate Monotonic Analysis, we de-
fine an enhanced architecture derivation process that will
perform simultaneous activities resulting in three kinds
of critical architectural decisions about system comp o-
nents:

• partitioning,
• allocating responsibility, and
• defining cooperation.

Traditional approaches and methods define a sequence
for making these decisions. However, since the res ult-
ing system must meet time constraints, it is of paramount
importance that these three decisions all be made simul-
taneously with collective insight.

Traditional approaches and methods define a sequence
for making these decisions. However, since the result-
ing system must meet time constraints, it is of paramount

importance that these three decisions all be made simul-
taneously with collective insight.

Classical design and early architecture decomposition ef-
forts traditionally focus on domain analysis and fun c-
tional cohesion to derive subsystem components. This
domain analysis traditionally assigns objects to the
nouns that appear during domain discovery.

Based on extensive experience in defining time-
constrained architectures, however, the authors feel
strongly that timing concerns must play an important
role in the choice of system modules or objects. Concur-
rency modeling and its accompanying synchronization
behavior become a dominant concern surprisingly early
in the architecture development process whenever re-
sponse time is a critical factor. Understanding the RMA
technology and its implications drive us to construct sys-
tem components that are explicitly constrained to serve
one primary time constraint to the greatest extent possi-
ble. It can be readily shown that objects that serve more
than one primary time constraint will introduce ineffi-
ciencies and performance degradation within the result-
ing system.

How Performance Affects the Choice of Objects

In simple applications, each thread is assigned a priority
based upon its rate of execution. (More sophisticated
scheduling algorithms are also available that may be
used to vary priority between actions.) The choice of
threads therefore becomes an important decomposition
consideration at high levels of abstraction.

Each thread should serve a single time constraint; other-
wise some portion of that thread will be running at a
non-optimal priority. At best, such non-optimal priori-
ties result in bounded priority inversion that will ad-
versely affect the overall system performance; at worst,
as seen in several real-life examples, the system will fail
in unpredictable ways.

Suppose, for example, that a system is being designed to
handle data acquisition and tape file creation. The initial
design might have a single aggregate object to handle
both functions. The sampling rates required for data col-
lection provide a time constraint, while the requirement
to keep the tape "streaming" (not underrun the buffer)
provides a second time constraint. Actual systems have
been built for these functions by using a single larger
thread to handle both functions and some additional
ones. This approach could not meet performance con-
straints. Similar systems have demonstrated an inability
to meet deadlines even though their overall CPU compu-
tation utilization is less than 20 percent!

The solution is to factor the composite object into sepa-
rate objects, each satisfying a single time constraint.
These objects are implemented as schedulable threads,
with scheduling priority assigned rate monotonically.

A related performance concern involves the cooperation
between objects. When something is produced by one
object that is needed by another, the objects really do not
execute independently, even though they may be charac-
teriz ed as doing so. This is an example of a precedence
constraint. If two objects are synchronized to depend
upon each other's execution, the composite performance
takes on the timing constraints of the slower object
(longer frame rate) by blocking the faster object, forcing
it to “slow down.”

As an example, consider a vendor who makes and deliv-
ers pizza. A pizza is produced every six minutes, but is
delivered in a very strange town. Each delivery takes 20
minutes, because social behavior in that town requires
some minimal cordial social interaction. It is also under-
stood that no pizza is thrown away. This is represented
in Figure 6. (a relaxed notation is used here for simplic-
ity)

Figure 6. Pizza Delivery

The pizzas will stack up on the counter waiting for the
delivery vehicle to return! In general, if the time con-
straints at both ends of the dependency are too dissimi-
lar, the architecture must be adjusted to reduce blocking.

A real example of this is a CPU and its local memory.
The original architecture of almost all CPUs and memo-
ries looked like Figure 6, where the CPU either read or
wrote to the memory. In the early days of computers,
CPU instruction execution times and memory access
times were similar.

In current systems, memory is much faster than the CPU,
requiring a change to the architecture so that the CPU
and memory (objects which now have very dissimilar
timing constraints) do not directly require each other’s
services. Such direct access produces significant block-
ing in the architecture while one object waits for the
other. In modern CPUs, caching as shown in figure 7
solves this problem.

Figure 7. Modern Cache Architecture

A Method for Generating Performance Driven

Architectures

The authors have been co-developers, trainers, and do-
main users of a design method tailored to produce real -
time architectures; i.e., architectures which have non-
trivial real-time constraints 2. This method inverts the
order of the activities traditionally performed in object -
oriented or structured analysis. This is necessary so that
the object decomposition and collaboration strategies
that show up extremely early in the architecture deriva-
tion and commitment process reflect meaningful timing
constraints and collaboration strategies that do not pro-
vide excessive blocking or priority inversion.

A layered recursive refinement development approach is
assumed. The essential steps in the process are character-
ized as follows:

1. Initially partition the high-level domain-
independent functionality into "first cut"
objects characterized as black boxes.

2. Assign reactive responsibility (services
provided to clients) for each object

3. Assign proactive responsibility (autono-
mous actions which are self invoked) to
each object.

4. Characterize any shared resources required
by the cooperation of reactive and proac-
tive responsibilities within each object.

5. Formulate the arbitration policy of each ob-
ject to synchronize and allocate resources
between the reactive and proactive objects.
This includes explicit use of r esources as
well as characterizing synchronous and
asynchronous communications behavior.
(This will lead to explicit characterization
of blocking.)

6. Connect the objects as required by their
composite functionality and domain based
cooperation.

7. Study each object and see if it attempts to
satisfy a single time constraint. If more
than one, further decompose the object un-
til each object satisfies only one time con-
straint. Add resources and synchroniza-
tions as appropriate for the new partitio n-
ing.

8. Look at the connections between objects.
When the timing constraints at each end of
the connector are excessively dissimilar,
introduce "timing transformers" in a man-
ner similar to that done in the memory
cache example. This provides minimal
blocking between objects by adding new
reactive objects whose primary purpose is
to provide minimal blocking.

2 Gerhardt, M., Locke C.D., Real Time Object Oriented Arch i-
tecture Class, Lockheed-Martin, 1999.

CPU L1
Cache

L2
Cache

Memory

Pizza Creation
6 minutes

Delivery
20 minutes

Back to the Family - Extensibility and Stability

The children will grow older and eventually begin to
drive (ugh). They can undertake tasks of their own and,
in fact, will incessantly attempt to get permission to use
both cars for these tasks.

Schedulability analysis such as RMA not only produces
a Boolean result about whether the system can meet all
its deadlines (is schedulable), but when not all deadlines
can be met, will indicate which ones can and cannot be
met! Conversely, if all deadlines can be met, the analysis
indicates the total effective utilization (including block-
ing) of the system. This gives an accurate indication of
how much more work can be added to the system before
deadlines are missed. This is just the sort of information
that developers of product lines with long lifetimes (and
significant extension to the original functionality) are
seeking.

 Conclusions

This paper has demonstrated that the seemingly cryptic
issues usually associated with hard real-time systems are
quite common in everyday life. If we apply our instinct
about these issues to real-time system architecture syn-
thesis, achieving guaranteed performance becomes a re-
alistic goal. These steps need to be accompanied by an
improved design and decomposition process, adding at-
tributes and behavior pertinent to characterizing utiliz a-
tion and existence of resources that may be contended
for by simultaneous potential clients.

Once this notation and design discipline becomes institu-
tionalized by a design team, technology like Rate Mono-
tonic Analysis and commercial tools such as TimeWiz
can be readily applied to eliminate the risk and cost of
system performance behavior or anomaly.

Existing practices, notation, and design methods must be
enhanced to address the inclusion of appropriate behav-
ior and parametric information relating to timing per-
formance. Subsequent scheduling and timing analysis
requires such changes.

