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Abstract 
Predictable systems are systems in which correctness 
arguments consider both the appropriateness and the 
timeliness of delivered results.  Such systems exhibit both 
statistical timing as well as bounded duration timing ex-
pectations.  Such systems require suitable architectural 
techniques that do not preclude meeting the timing ex-
pectations.  This paper provides a summary of some of 
these issues and the architectural concerns that surface 
when addressing timing constraints in performance 
critical systems.  The currently well-known design meth-
ods are examined for their suitability to describe and re-
cord architectures with predictable performance.  Rele-
vant changes resulting in a suitable method for real -time 
object-oriented analysis to are suggested. 
 

Introduction 
A real-time system is one in which correctness depends 
on meeting time constraints.  Correctness arguments, 
therefore, must reason about response time requirements 
as well as functional requirements.  The timing require-
ments may be “Hard” duration limits between events or 
“Soft” statistical expectations.  A real-time architecture 
must not preclude meeting response time constraints.  
 
Object choices made while architecting a system always 
involve resource sharing and schedule contention that 
can ultimately result in timing failure. Many popular ar-
chitectures and methodologies ignore response time 
concerns until it is too late to correct them economically. 
 

Levels of Timing Expectations 
 
There are five categories of timing expectations.  Each 
category provides a different degree of rigor regarding 
expected performance.  More importantly, each category 
utilizes different infrastructure and communication tech-
niques.  The architectural structures and techniques ap-
propriate for use in one of these categories are usually 
inappropriate for the others.  The categories are pre-
sented in order of increasing knowledge about the inter-
nal mechanics of implementation.  Note that both of the 
last two categories can guarantee bounded response 
time, but they have very different costs and fault charac-
teristics.  
• Measured after the fact – (quantitative indications) 

Quantitative measurements may or may not be re-
peatable. Ad hoc quantification and measurement 
is extremely misleading. For example, measuring 
the temperature for 3 days does not adequately 
prepare for prediction of tomorrow’s temperature. 

• Repeatable Measured 
Knowledge about the context in which measure-
ments are taken adds to the confidence by which 
extrapolation and prediction can be done.  Know-
ing the latitude, time of day, and date of the tem-
perature measurement give increasing confidence 
to extrapolation of the three temperature measur e-
ments for the fourth day.  In the case of a meas-
urement capturing the execution time of the soft-
ware application, one must consider the application 
in a context of background processes including 
spoolers, message handlers, and garbage collectors 
for meaningful extrapolation.  

• Statistically Predictable Architecture  
Statistical characterizations indicate average re-
sponse time and related standard deviation. Archi-
tectural techniques employed in building statisti-
cally predictable systems include queuing (usually 
first-in-first-out), asynchronous messaging, and re-
active event handlers.  Analysis techniques that are 
applicable include discrete event simulation via use 
cases and the application of queuing theory. 

• Analytically Guaranteed Bounded Latency 
Latency is the duration between the occurrence of 
an event and the completion of the associated sys-
tem response to that event. Architectural tech-
niques resulting in systems that exhibit guaranteed 
bounded latency include Shared Resources .  
Shared resources are entities that are "locked" by 
clients.  As such, they exhibit protected regions of 
use.  In conjunction with Fixed Priority Schedul-
ing, “real-time” O/S Kernels permit the use of an a-
lytical techniques such as rate monotonic analysis 
and resource arbitration policies such as priority 
inheritance.  Such systems may be analyzed and 
may therefore be guaranteed to possess upper 
bounded latency response times to specified stim-
uli. 

• Deterministic  
A deterministic architecture provides a prior i 
knowledge about every state that a system will pass 
through over time in response to a specific stimu-
lus. Techniques used to build deterministic archi-
tectures include centralized frame based schedulers 
(cyclic executives) and statically limited language 
subsets (eliminating constructs and concepts such 
as exceptions and their propagation, allocation, dy-
namic polymorphism resolution, and dynamic 
thread creation).  The SPARK approach is an ex-



 

ample of such an approach from Praxis in the 
United Kingdom. 

 
Real-Time Properties  

 
There is a difference in how we discuss real-time sys-
tems from how we discuss more conventional time-
sharing systems.  Time sharing systems have implicit 
expectations about fairness and concepts such as "round 
robin" scheduling disciplines.  Common concepts such 
as throughput are often confused with real-time concepts 
such as deadlines.  Consider the terminology shown in 
Table 1: 
 

 Time Sharing 
Systems 

Real-time 
Systems 

Capacity High Through-
put 

Schedulabil-
ity 

Responsivness Fast Average 
Response 

Ensured 
Worst-Case 
Latency 

Overload Fairness Stability 
 

Table 1.  Terminology about Timing Concepts 
 
Schedulability is the ability of tasks to meet all hard 
deadlines.  
Latency is the worst -case system response time to 
events.  
Stability in over load means the system meets critical 
deadlines even if all deadlines cannot be met. 
 

Current Design Practices and Processes 
 
Current practices, processes, and tools use object subsys-
tem abstractions that do functional encapsulation; i.e., 
the abstractions characterize services and interface-
centric concerns.  In order to successfully analyze a sys-
tem’s guaranteed performance and latency, the semantics 
of resource contention and usage not only must be cate-
gorized explicitly and made visible to potential clients, 
but this must be done surprisingly early in the develop-
ment process. 
 
Most popular object -oriented decomposition techniques 
and their accompanying graphical representations do not 
sufficiently address expression of concurrency, active 
objects, shared resources, and synchronization and con-
tention semantics with sufficient precision to allow all 
architectural analysis.  A simple example illustrates this 
point. 
 

Family Obligations – An Example 
 
The idea of shared resources is familiar to most people.  
Consider the family car. When parents run errands, the 
errands must be sequenced because each errand requires 
the car.  The inability to do an errand that a family mem-
ber is ready to do, but cannot do because the car is un-
available, is regarded as blocking.  Most real-time sys-

tems fail to meet their performance deadlines because of 
excessive blocking rather than because of excessive CPU 
utilization.  This has been well proven with numerous 
case histories. 
 
Performance limitations from sharing a car are so well 
known that families purchase additional cars to improve 
performance.  Consider therefore, a family with two 
cars.  This family has three things to do: 1) purchase 
groceries, 2) take the kids to soccer, and 3) purchase 
hardware and fix the leaky toilet. 
 
There are, therefore, three independent functional ac-
tions to perform, corresponding to numbers one through 
three above.  The family has two cars and only two 
adults to drive the two cars.  The family is also "socially 
correct" according to American suburban conventions. 
This means that the mother will take the kids to soccer 
(it seems few have heard of “Soccer Dads,” but everyone 
has heard of “Soccer Moms”) and will also purchase the 
groceries (supermarkets in the USA sell Cosmopolitan 
magazine rather than Esquire.) This means that the father 
(using the other car) will go to the hardware store, pur-
chase the parts, and fix the toilet (Oh joy!) 
 
The interesting implementation details relevant here are 
that the soccer field is on the other side of town and 
takes approximately 45 minutes driving each way.  In 
addition, the supermarket is next door to the hardware 
store in a strip mall five minutes from home. 
 
If there are performance constraints, for example, indi-
cating that in addition to the above tasks, Mom also 
needs to spend five hours preparing dinner to entertain 
Dad’s boss, this might limit the time allowable for soc-
cer and groceries support to under one-hour.  This would 
mandate a re-architecture of the system and its resources 
so that Dad was assigned to soccer and grocery tasks 
while Mom took care the toilet repair.  (Consider this 
performance directed social change!) 
 
Current design methods and practices do not effectively 
represent this type of performance information.  Work is 
currently underway within the Object Management 
Group for an enhanced standard extending the Unified 
Modeling Language (UML) and to effectively deal with 
real-time architecture and design issues. 
 

Sample Graphical Notation 
 
The following figure provides a candidate graphical no-
tation to express the desired semantics at the higher level 
of design regarding resources, and scheduling issues. 
  

Fig 2.  Early Graphical Design and Essential Timing Detail 
 
At the highest level of architecture, there are essential 
details that must be considered and essential allocations 
of very high-level functionality to a set of predetermined 
and constrained resources.  Reducing the time that it 



 

takes to purchase groceries (analogous to reducing com-
putation time by speeding things up) has a fairly minimal 
effect in comparison to the amount of time Mom spends 
in traffic (analogous to blocking time vs. computation 
time issues). 
 
This work is actually an extension of the work emanat-
ing from 1984 by R.J.A. Buhr about visual prototyping 
from a work by the same name.  These considerations 
also represent the issues that are being currently dealt 
with within the Object Management Group in its work 
extending UML for real-time. 
 

Rate Monotonic Analysis  
 
Rate Monotonic Analysis (RMA) consists of a set of 
techniques for analyzing and guaranteeing that the ex-
ecutable threads within a system – including periodic 
and aperiodic activities – will be completed before their 
required respective deadlines.   
 
RMA is an analysis rather than a simulation or modeling 
technique.  For complex systems, obtaining the scenario 
that embodies the worst-case performance stress upon a 
system is extremely difficult.  Simulated execution of 
such a simulation case usually involves significant com-
puting resources. 
 
Both the average and the worst case response times are 
of interest for systems which manifest timing require-
ments.  Average response time is usually obtained 
through simulation modeling or extensive laboratory 
measurements.  Worst -case response time is obtained 
through application of Rate Monotonic Analysis.  Sy s-
tem design tradeoffs altering the worst case and average 
case response times can be done by changing not only 
execution times, but by altering the internal queuing, 
synchronization, and concurrency partitioning of the ar-
chitecture as desired  

 
Hard & Soft Real-Time 

 
To a first order, time constraints can be characterized in 
two categories.  The first category consists of hard time 
constraints, for which the system must be carefully de-
signed to never miss one.  The implication of a hard-
real-time response requirement is that missing such a re-
quirement constitutes a failure to meet some part of the 
overall system requirements, and is thus logged as a sys-
tem failure. 

The second category consists of soft time constraints.  A 
soft time constraint is one that must be met just like a 
hard time constraint, but missing one may not always be 
considered a system failure.  Soft time constraints are 
usually characterized by constraints that can be missed 
infrequently, or which can be missed by small amounts, 
or both.  There are also other definitions of soft time 
constraints, such as periodic computations that might be 
skipped occasionally. 

Most real-time systems contain mixtures of hard and soft 
time constraints.  For example, a system might have a 
requirement for controlling a radar transmitter, which is 
usually characterized as a hard time constraint. The same 
system might have response time constraints for operator 
actions, which are generally soft constraints.   

 
Timing Requirements 

 
Int erestingly, the requirements for meeting time con-
straints in most application systems are not obvious from 
the top-level description of the system.  Instead, most 
time constraints are derived from other system require-
ments, such as accuracy, fidelity, fault-tolerance, or user 
interfaces.   
 
For example, a robot might have an accuracy require-
ment for positioning an arm.  This frequently results in a 
derived requirement for periodicity in measuring posi-
tion; periodicity results in a time constraint for the result-
ing position computation.  For another example, a re-
quirement for fault tolerance will generally imply that a 
timeout or heartbeat mechanism must be used.  The 
presence of a heartbeat or timeout in a system results in a 
hard-real-time timing requirement because a failure to 
complete an operation within the response requirement 
will result in an anomalous declaration of failure and re-
covery that is generally at least as dangerous as the 
original failure for which automatic recovery was re-
quired. 
 

RMA Fundamentals Overview 
 
As previously mentioned, Rate Monotonic Analysis 
(RMA) consists of a set of techniques for analyzing and 
guaranteeing that the executable threads within a system 
will be completed before their required respective dead-
lines.  These techniques are based on work originally 

Soccer Trip

Groceries Purchase

Period: 96 hours ;
Work: 120 min ;
Worst Case Execution: 120 min

Mom’s Car

Resource Start: 5 min;
Resource Stop: 80 min;

Period: 72 hours ;
Work: 65 ;
Worst Case Execution: 70 min

Resource Start: 3 min;
Resource Stop: 45 min

HW Resource

Execution Thread



 

performed by the Jet Propulsion Laboratory 1 that proved 
that a set of periodic tasks would always complete before 
the end of their periods as long as their total worst-case 
utilization never exceeds a specified bound that  depends 
only upon the number of tasks, regardless of their phas-
ing.  Based on this theoretical result, it was shown that 
any set of periodic tasks whose total utilization is less 
than 69% would always complete before the end of their 
periods. 
 
Subsequently, this basic result has been extended in 
many directions to handle task synchronization (mutual 
exclusion), deadlines that are not the same as task peri-
ods, arbitrary priority assignments, aperiodic tasks, and 
many other real-time system situations.  The theory re-
quires some basic system architecture information, in-
cluding task periods (for periodic tasks), task deadlines, 
task priorities, execution time budgets, synchronization 
time budgets, and arbitration policies.  Given this infor-
mation, RMA analysis tools can determine whether all 
time constraints can be met, and if not, which constraints 
could be missed.  The answer must then be interpreted to 
decide whether the architecture will produce acceptable 
timing results. 
 

Rate Monotonic Analysis Example 
 
The following discussion of the family car utilizes the 
notation from "A Practitioner's Handbook to Rate Mono-
tonic Analysis, Klein et al.”, Kluwer 1993.  The graphi-
cal rendering uses the TimeWiz tool provided by the 
TimeSys Corporation.   
 

Fig 3 - Resource Diagram 
 

 
Fig 4 – The Software Behavior Diagram 

 

                                                                 
1 Liu & Layland, Scheduling Algorithms for Multipr o-
gramming in a Hard Real Time Environment.  JACM 20 
(1):46, 1973. 

Fig 3 shows the Resources specified by the architecture 
design – the active or schedulable resource (Mom, the 
driver), and Mom’s car (a resource that can be used by 
only one driver at a time, or used in a locked and pro-
tected fashion.)  These resources are utilized by the be-
havior of the system.  This is depicted in the software 
diagram. 
 
Each collection of linked triangles and circles represents 
a thread. Each element of the software diagram has 
properties associated with it.   
 
The Triangles are Triggers  and indicate the invocation 
of a thread. They are concerned with things relevant to 
invocation of the thread.  Circles represent Actions.  Ac-
tions convey information about where they execute, how 
much they execute, and what resources they need in or-
der to execute. 
 
The following table summaries the relevant properties 
needed to describe the problem and analyze its perform-
ance.  Note that the timing diagram in Fig 4 is a more 
precise definition of the problem than Fig 2.  The need 
for the car is more precisely defined to be needed only 
by the four actions containing “drive” in their names.  
Each represents driving to or from a respective location.  
When Mom is watching the soccer game, she really does 
not need the car and it could be used for other purposes 
with no additional consequences to Mom’s deadlines as 
long as it showed up at the soccer field by the end of the 
game. 
 

Symbol Property Meaning Value 

Triangle  Period Repetition in-
terval for exe-
cution 

Grocer ies 72 Hrs 
Soccer  96 Hrs 

Triangle  Deadline Needed com-
pletion Time 

Groceries 72 Hrs 
Soccer  96 Hrs 

Circle  CPU Used Which 
Schedulable 
Resource is 
Used 

All Actions are 
done by Mom 

Circle  Execution 
Time 

How long the 
work takes 

Update Shop List 
Drive To Store 
Shop 
Drive Home 
Get Kids 
Drive To Soccer 
Watch 
Drive Home 
Feed Kids 

Circle  Priority What the 
scheduling 
importance is 

All Actions in 
Groceries Thread 
get higher priority 
than all actions in 
Purchase Grocer-
ies (Rate Mono-
tonic Assignment) 

Table 5 – Timing Properties and Meanings 



 

 
Analysis can now be done to guarantee meeting all dead-
lines.  The TimeWiz tool generated the following: 

 
Fig 6 – Worst Case Analysis 

 
Since all analyzed worst-case completion times are 
smaller than required deadlines, the system is analyti-
cally proven to be Schedulable. 
 

Enhancing the Development Process to Deal with 
Timing Performance 

 
The top -level concerns that take precedence when per-
formance constraints must be met invert the traditional 
order and concerns within the design process.  A non-
traditional view of systems architecture development is 
needed. It is motivated by the requirement to produce an 
architecture capable of predictably meeting its time 
constraints in addition to all the traditional correctness, 
quality, and maintainability concerns. 
 
Object-Oriented systems development and Object-
Oriented programming both focus upon producing en-
capsulations and abstractions for system componentry.  
The means of encapsulating these abstractions is based 
upon an analysis of function and data interaction. The ef-
fects of the resulting architecture on the ability of a sys-
tem to meet its performance expectations requires sig-
nificant additional understanding well beyond the tradi-
tional understanding involving function sequences and 
their combined computational timing requirements. 
 
Starting with the goal of guaranteed timing performance 
and the technique of Rate Monotonic Analysis, we de-
fine an enhanced architecture derivation process that will 
perform simultaneous activities resulting in three kinds 
of critical architectural decisions about system comp o-
nents:  
 

• partitioning,  
• allocating responsibility, and  
• defining cooperation. 

 
Traditional approaches and methods define a sequence 
for making these decisions.    However, since the res ult-
ing system must meet time constraints, it is of paramount 
importance that these three decisions all be made simul-
taneously with collective insight. 
 
Traditional approaches and methods define a sequence 
for making these decisions.    However, since the result-
ing system must meet time constraints, it is of paramount 

importance that these three decisions all be made simul-
taneously with collective insight. 
 
Classical design and early architecture decomposition ef-
forts traditionally focus on domain analysis and fun c-
tional cohesion to derive subsystem components.  This 
domain analysis traditionally assigns objects to the 
nouns that appear during domain discovery.   
 
Based on extensive experience in defining time-
constrained architectures, however, the authors feel 
strongly that timing concerns must play an important 
role in the choice of system modules or objects. Concur-
rency modeling and its accompanying synchronization 
behavior become a dominant concern surprisingly early 
in the architecture development process whenever re-
sponse time is a critical factor.  Understanding the RMA 
technology and its implications drive us to construct sys-
tem components that are explicitly constrained to serve 
one primary time constraint to the greatest extent possi-
ble.  It can be readily shown that objects that serve more 
than one primary time constraint will introduce ineffi-
ciencies and performance degradation within the result-
ing system. 
 

How Performance Affects the Choice of Objects 
 
In simple applications, each thread is assigned a priority 
based upon its rate of execution.  (More sophisticated 
scheduling algorithms are also available that may be 
used to vary priority between actions.)  The choice of 
threads therefore becomes an important decomposition 
consideration at high levels of abstraction. 
 
Each thread should serve a single time constraint; other-
wise some portion of that thread will be running at a 
non-optimal priority.   At best, such non-optimal priori-
ties result in bounded priority inversion that will ad-
versely affect the overall system performance; at worst, 
as seen in several real-life examples, the system will fail 
in unpredictable ways. 
 
Suppose, for example, that a system is being designed to 
handle data acquisition and tape file creation.  The initial 
design might have a single aggregate object to handle 
both functions.  The sampling rates required for data col-
lection provide a time constraint, while the requirement 
to keep the tape "streaming" (not underrun the buffer) 
provides a second time constraint.  Actual systems have 
been built for these functions by using a single larger 
thread to handle both functions and some additional 
ones. This approach could not meet performance con-
straints.  Similar systems have demonstrated an inability 
to meet deadlines even though their overall CPU compu-
tation utilization is less than 20 percent! 
 
The solution is to factor the composite object into sepa-
rate objects, each satisfying a single time constraint. 
These objects are implemented as schedulable threads, 
with scheduling priority assigned rate monotonically. 



 

A related performance concern involves the cooperation 
between objects.  When something is produced by one 
object that is needed by another, the objects really do not 
execute independently, even though they may be charac-
teriz ed as doing so.  This is an example of a precedence 
constraint.  If two objects are synchronized to depend 
upon each other's execution, the composite performance 
takes on the timing constraints of the slower object 
(longer frame rate) by blocking the faster object, forcing 
it to “slow down.” 
 
As an example, consider a vendor who makes and deliv-
ers pizza.  A pizza is produced every six minutes, but is 
delivered in a very strange town.  Each delivery takes 20 
minutes, because social behavior in that town requires 
some minimal cordial social interaction.  It is also under-
stood that no pizza is thrown away.  This is represented 
in Figure 6. (a relaxed notation is used here for simplic-
ity) 

Figure 6.  Pizza Delivery 
 
The pizzas will stack up on the counter waiting for the 
delivery vehicle to return!  In general, if the time con-
straints at both ends of the dependency are too dissimi-
lar, the architecture must be adjusted to reduce blocking.  
 
A real example of this is a CPU and its local memory. 
The original architecture of almost all CPUs and memo-
ries looked like Figure 6, where the CPU either read or 
wrote to the memory.  In the early days of computers, 
CPU instruction execution times and memory access 
times were similar.   
 
In current systems, memory is much faster  than the CPU, 
requiring a change to the architecture so that the CPU 
and memory (objects which now have very dissimilar 
timing constraints) do not directly require each other’s 
services.  Such direct access produces significant block-
ing in the architecture while one object waits for the 
other.   In modern CPUs, caching as shown in figure 7 
solves this problem. 

Figure 7.  Modern Cache Architecture 

 
A Method for Generating Performance Driven       

Architectures 
 
The authors have been co-developers, trainers, and do-
main users of a design method tailored to produce real -
time architectures; i.e., architectures which have non-
trivial real-time constraints 2.  This method inverts the 
order of the activities traditionally performed in object -
oriented or structured analysis.  This is necessary so that 
the object decomposition and collaboration strategies 
that show up extremely early in the architecture deriva-
tion and commitment process reflect meaningful timing 
constraints and collaboration strategies that do not pro-
vide excessive blocking or priority inversion.   
 
A layered recursive refinement development approach is 
assumed. The essential steps in the process are character-
ized as follows: 

1. Initially partition the high-level domain-
independent functionality into "first cut" 
objects characterized as black boxes. 

2. Assign reactive responsibility (services 
provided to clients) for each object 

3. Assign proactive responsibility (autono-
mous actions which are self invoked) to 
each object. 

4. Characterize any shared resources required 
by the cooperation of reactive and proac-
tive responsibilities within each object.  

5. Formulate the arbitration policy of each ob-
ject to synchronize and allocate resources 
between the reactive and proactive objects.  
This includes explicit use of r esources as 
well as characterizing synchronous and 
asynchronous communications behavior.  
(This will lead to explicit characterization 
of blocking.) 

6. Connect the objects as required by their 
composite functionality and domain based 
cooperation. 

7. Study each object and see if it attempts to 
satisfy a single time constraint. If more 
than one, further decompose the object un-
til each object satisfies only one time con-
straint.  Add resources and synchroniza-
tions as appropriate for the new partitio n-
ing. 

8. Look at the connections between objects.  
When the timing constraints at each end of 
the connector are excessively dissimilar, 
introduce "timing transformers" in a man-
ner similar to that done in the memory 
cache example.  This provides minimal 
blocking between objects by adding new 
reactive objects whose primary purpose is 
to provide minimal blocking. 

                                                                 
2 Gerhardt, M., Locke C.D., Real Time Object Oriented Arch i-
tecture Class, Lockheed-Martin, 1999. 
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Back to the Family - Extensibility and Stability 
 
The children will grow older and eventually begin to 
drive (ugh).  They can undertake tasks of their own and, 
in fact, will incessantly attempt to get permission to use 
both cars for these tasks. 
 
Schedulability analysis such as RMA not only produces 
a Boolean result about whether the system can meet all 
its deadlines (is schedulable), but when not all deadlines 
can be met, will indicate which ones can and cannot be 
met! Conversely, if all deadlines can be met, the analysis 
indicates the total effective utilization (including block-
ing) of the system.  This gives an accurate indication of 
how much more work can be added to the system before 
deadlines are missed.  This is just the sort of information 
that developers of product lines with long lifetimes (and 
significant extension to the original functionality) are 
seeking. 
 

 Conclusions 
 
This paper has demonstrated that the seemingly cryptic 
issues usually associated with hard real-time systems are 
quite common in everyday life.  If we apply our instinct 
about these issues to real-time system architecture syn-
thesis, achieving guaranteed performance becomes a re-
alistic goal.  These steps need to be accompanied by an 
improved design and decomposition process, adding at-
tributes and behavior pertinent to characterizing utiliz a-
tion and existence of resources that may be contended 
for by simultaneous potential clients. 
 
Once this notation and design discipline becomes institu-
tionalized by a design team, technology like Rate Mono-
tonic Analysis and commercial tools such as TimeWiz 
can be readily applied to eliminate the risk and cost of 
system performance behavior or anomaly. 
 
Existing practices, notation, and design methods must be 
enhanced to address the inclusion of appropriate behav-
ior and parametric information relating to timing per-
formance.  Subsequent scheduling and timing  analysis 
requires such changes.  
 
 


